Муниципальное учреждение дополнительного образования «Центр внешкольной работы»

Рассмотрена на заседании методического совета ЦВР $25.01.2022~\Gamma$. протокол № 8

Утверждена приказом ЦВР № 31 от 25.01.2022 г.

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Соревновательная робототехника»

Возраст учащихся: 7-11 лет Срок реализации: 4 месяца

Автор-составитель: Вершинина Светлана Викторовна, педагог дополнительного образования

г. Оленегорск

2022 год

Пояснительная записка

Область применения программы

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Соревновательная робототехника» (далее - Программа) направлена на формирование у учащихся компетенций в области освоения научных знаний, и развитие интереса к инженерным профессиям, через проектную деятельность.

В рамках данной программы учащиеся приобретают начальные технические знания, необходимые для работы с современными высокотехнологичными наборами робототехники. Проектная деятельность подразумевает практическое решение инженерных задач. При их выполнении учащиеся знакомятся с возможностями работы на высокотехнологичном оборудовании, принципами его работы и областями применения.

Учащиеся откроют для себя мир соревнований роботов, а также изучат основы конструирования и программирования автономных роботов с использованием разнообразных датчиков. Работая в команде, они смогут сконструировать самого быстрого робота для соревнований, узнают о различных методиках испытаний и совершенствования программ, научатся разрабатывать решения для выполнения различных задач, используя навыки инженерного проектирования, разовьют навыки сотрудничества и совместной работы, а также другие жизненно необходимые навыки, которые пригодятся им в будущем.

Отличительной особенностью программы является то, что она основана на проектной деятельности, выполнение проектов позволит учащимся применять начальные знания и навыки для различных разработок и воплощения своих идей и проектов в жизнь с возможностью последующей их коммерциализации.

Программа базируется на основе официального курса компании Lego Education. Программа составлена на основе авторских программ Д.Г. Копосова «Первый шаг в робототехнику» и О.С Власовой «Образовательная робототехника в учебной деятельности учащихся начальной школы».

Программа ориентирована на решение реальных технологических задач в рамках проектной деятельности детей, учащихся в мини-технопарке «Квантолаб».

Программа разработана в соответствии:

- с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- с приказом Министерства просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;

- с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ» (письмо Министерства и науки Российской Федерации от 18.11.2015 № 09-3242);
- с письмом Министерства образования и науки РФ от 25.07.2016 № 09-1790 «Рекомендации совершенствованию ПО дополнительных образовательных программ, созданию детских технопарков, центров молодежного инновационного творчества И внедрению подготовки детей и молодежи по программам инженерной направленности»;
- с постановлением Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении СанПиН 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- с постановлением Главного государственного санитарного врача РФ от 28.01.2021 №2 «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания».

Направленность программы: техническая.

Актуальность программы «Соревновательная робототехника» обусловлена необходимостью формирования у детей компетенций в технических областях знаний, работать над решением инженерных задач, практической работой с высокотехнологичным оборудованием.

Педагогическая целесообразность обусловлена необходимостью развития конструкторских способностей у детей в сфере научнотехнического творчества; необходимостью формирования профессиональной ориентации учащихся в сфере производства с использованием высокотехнологичного оборудования.

Новизна программы заключается в интегрировании содержания, методов обучения и образовательной среды, обеспечивающих расширенные возможности детей и молодежи в получении знаний из различных областей науки и техники в интерактивной форме за счет освоения hard- и soft-компетенций, в том числе, в ходе реализации командной работы.

Цель программы: способствовать формированию компетенций в областях робототехники, компьютерных технологий.

Задачи программы:

Обучающие:

- 1. изучать принципы работы робототехнических элементов, состояние и перспективы робототехники в настоящее время;
 - 2. осваивать «hard» и «soft» компетенции;
- 3. формировать умение ориентироваться на идеальный конечный результат;
- 4. обучать владению технической терминологией, технической грамотности;
 - 5. формировать умение пользоваться технической литературой;
 - 6. формировать целостную научную картину мира;
 - 7. изучать приемы и технологии разработки простейших алгоритмов и

систем управления, машинного обучения, технических устройств и объектов управления.

Развивающие:

- 1. формировать интерес к техническим знаниям;
- 2. развивать у обучающихся техническое мышление, изобретательность, образное, пространственное и критическое мышление;
- 3. формировать учебную мотивацию и мотивацию к творческому поиску;
- 4. развивать волю, терпение, самоконтроль, внимание, память, фантазию;
- 5. развивать способности осознанно ставить перед собой конкретные задачи, разбивать их на отдельные этапы и добиваться их выполнения;
- 6. стимулировать познавательную активность обучающихся посредством включения их в различные виды конкурсной деятельности.

Воспитательные:

- 1. воспитывать дисциплинированность, ответственность, самоорганизацию;
 - 2. формировать организаторские качества;
 - 3. воспитывать трудолюбие, уважение к труду;
 - 4. формировать чувство коллективизма и взаимопомощи;
- 5. воспитывать чувство патриотизма, гражданственности, гордости за достижения отечественной науки и техники.

Уровень программы: стартовый.

Возраст учащихся, участвующих в реализации программы: 7-11 лет.

Форма реализации программы – очная.

Срок реализации программы (модуля): 4 месяца.

Объем программы – 36 часов.

Количество учащихся в группе: 10-12 человек.

Форма организации занятий – групповая, при работе над проектами – групповая, парная.

Режим занятий: 1 раз по 2 академических часа.

Виды учебных занятий и работ: практические работы, беседы.

Ожидаемые результаты Предметные:

знать:

- основные принципы работы с робототехническими элементами;
- основные направления развития робототехники;
- основные сферы применения робототехники, мехатроники и электроники;
- основные принципы работы электронных схем и систем управления объектами;

уметь:

- разрабатывать простейшие алгоритмы и системы управления робототехническими устройствами;

владеть:

- основной терминологией в области робототехники, электроники, компьютерных технологий;
 - методами разработки простейших алгоритмов и систем.

Метапредметные:

- развитая наблюдательность, внимание, воображение и мотивация к учебной деятельности;
- умение вести поиск, анализ, отбор информации, ее сохранение, передачу с помощью технических средств и информационных технологий;
- умение планировать последовательность шагов алгоритма для достижения цели;
 - развитое проектное мышление;
- умение работать над проектом в команде, эффективно распределять обязанности.

Личностные:

- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- овладение навыками сотрудничества, а также формирование навыков совместной работы в процессе создания дизайн-проекта;
 - развитие образно-логического и пространственного мышления;
 - формирование потребности в самореализации и саморазвитии.

Формы итоговой диагностики:

- демонстрация решений проекта, соревнования роботов.

Итоговая оценка развития личностных качеств воспитанника производится по трём уровням:

- 1. «высокий»: положительные изменения личностного качества воспитанника в течение учебного периода признаются как максимально возможные для него.
- 2. «средний»: изменения произошли, но воспитанник потенциально был способен к большему.
 - 3. «низкий»: изменения не замечены.

Результатом усвоения учащимися программы по каждому уровню являются: устойчивый интерес к занятиям робототехникой, результаты достижений в массовых мероприятиях различного уровня.

Учебный план

No	Название раздела,	Количество часов			Формы аттестации/
п/п	темы	теория	практика	всего	контроля
	Вводное занятие. Техника безопасности и правила поведения на занятиях робототехникой.	1	1	2	собеседование, демонстрация проектов

	Повторение названий деталей. Делаем своего					
	робота					
1.	Соревновательная деятельность	6	26	32		
1.1	Сумо	1	3	4	практикум, участие в соревнованиях	
1.2	Робот-чертежник	1	3	4	практикум, участие в соревнованиях	
1.3	Кегельринг	1	3	4	практикум, участие в соревнованиях	
1.4	Кегельринг-макро	-	2	2	практикум, участие в соревнованиях	
1.5	Следование по линии	1	3	4	практикум, участие в соревнованиях	
1.6	Шорт-трек	1	2	2	практикум, участие в соревнованиях	
1.7	Слалом с препятствием	1	2	2	практикум, участие в соревнованиях	
1.8	Лабиринт	1	3	4	практикум, участие в соревнованиях	
1.9	Футбол роботов	1	3	4	практикум, участие в соревнованиях	
1.10	Захват флага	-	2	2	практикум, участие в соревнованиях	
	Заключительное занятие. Соревнование «Большое путешествие»	-	2	2	практикум, участие в соревнованиях	
	Итого:	7	29	36		

Содержание учебного плана

Вводное занятие – 2 часа

Теория: Организационные вопросы. Цели и задачи программы. Знакомство с планом работы. Техника безопасности и правила поведения на занятиях робототехникой. История развития соревновательной робототехники -1 час

Практика: Повторение названий деталей. Создание робота на свободную тему и демонстрация робота – 1 час

Раздел 1. Соревновательная деятельность – 36 часов

Тема 1.1. Сумо роботов – 4 часа

Теория: Знакомство с правилами соревнования «Сумо роботов». Этапы создания робота-сумоиста. Рассмотрение различных конструкций. Алгоритм работы робота - *1 час*

Практика: Создание модели и написание программы для робота для сумо в парах. Создание алгоритма поиска и обнаружения противника. Разработка тактики выталкивания соперника за границы ринга. Программирование робота для победы в состязании «Сумо». Доработка и тестирование робота. Участие в соревнованиях - 3 часа

Тема 1.2. Робот-чертежник - 4 часа

Теория: Знакомство с правилами соревнования «Робот-чертежник». Этапы создания робота-чертежника. Рассмотрение алгоритмов с различными заданиями для робота (квадрат, треугольник, пятиугольник, звезда) - **1 час**

Практика: Создание робота-чертежника в парах. Написание программы для выполнения простейшего алгоритма. Доработка, тестирование робота. Отработка различных алгоритмов. Участие в соревнованиях - *3 часа*

Тема 1.3. Кегельринг – 4 часа

Теория: Знакомство с правилами соревнований «Кегельринг» и «Кегельринг-макро». Этапы создания робота для кегельринга. Рассмотрение различных алгоритмов выталкивание кеглей - *1 час*

Практика: Создание робота для кегельринга в парах. Создание алгоритма поиска и обнаружения кеглей. Программирование робота для выбивания кегель из круга. Доработка, тестирование робота. Отработка различных алгоритмов. Участие в соревнованиях - *3 часа*

Тема 1.4. Кегельринг-макро – 2 часа

Практика: Доработка робота для кегельринга-макро – установка датчика света для определения цвета кеглей. Написание программы для выполнения алгоритма с определением цвета кеглей. Доработка, тестирование робота. Отработка различных алгоритмов. Участие в соревнованиях - 2 часа

Тема 1.5. Следование по линии - 4 часа

Теория: Знакомство с правилами соревнований следования по линии, Шорт-трек и слалома с препятствиями. Этапы создания робота для движения по линии с 1-м, 2-мя и тремя датчиками света. Рассмотрение различных алгоритмов для движения по линии с 1-м, 2-мя и тремя датчиками света - *1 час*

Практика: Создание робота для движения по линии с 1-м, 2-мя и тремя датчиками света в парах. Написание программы для выполнения алгоритма движения по линии. Доработка, тестирование робота. Отработка различных алгоритмов. Участие в соревнованиях - 3 часа

Тема 1.6. Шорт-трек – 2 часа

Практика: Создание робота для Шорт-трека 2мя датчиками света в парах. Написание программы для выполнения алгоритма движения по линии. Регулирование параметров, при которых программы работают без ошибок и с максимальной скоростью Доработка, тестирование робота. Отработка различных алгоритмов. Участие в соревнованиях - 2 часа

Тема 1.7. Слалом с препятствием – 2 часа

Практика: Создание модели робота для слалома с препятствиями Создание алгоритмов для объезда препятствий двумя различными способами: по квадрату или по дуге. Работа с датчиками расстояния и датчиком цвета одновременно. Программируйте робота для движения вдоль черной линии и объезда препятствий - 2 часа

Тема 1.8. Лабиринт – 4 часа

Теория: Знакомство с правилами соревнования Лабиринт. Этапы создания робота для Лабиринт, виды моделей Рассмотрения различных алгоритмов прохождения лабиринта - 1 час

Практика: Создание робота для прохождения лабиринта в парах. Написание программы для прохождения роботом лабиринта. Доработка, тестирование робота. Отработка различных алгоритмов. Участие в соревнованиях - *3 часа*

Тема 1.9. Футбол роботов – 4 часа

Теория: Знакомство с правилами соревнований Футбол роботов и захват флага. Этапы создания моделей для этих соревнований - *1 час*

Практика: Создание модели для футбола роботов. Доработка, тестирование робота. Выработка тактики защиты мяча, ворот от противника. Тренировочные игры. Участие в соревнованиях - *3 часа*

Тема 1.10. Захват флага – 2 часа

Практика: Создание модели для захвата флага. Доработка, тестирование робота. Выработка тактики защиты флага, а также атаки противника. Тренировочные игры. Участие в соревнованиях - 2 часа

Заключительное занятие – 2 часа

Практика: Соревнование «Большое путешествие». Создание и программирование модели для соревнования. Доработка, тестирование робота. Участие в соревнованиях. Подведение итогов года - 2 часа

Материально-техническое обеспечение

- кабинет, оснащенный компьютерной техникой;
- не менее 1 ноутбука на 2-х учащихся.

Основное оборудование и материалы:

- робототехнический комплект начального уровня Lego education spike;
- ресурсный набор начальный уровень Lego education spike.

Учебно-методические средства обучения:

- специализированная литература по направлению, подборка журналов;
- наборы технической документации к применяемому оборудованию;
- образцы моделей и систем, выполненные учащимися и педагогом;
- плакаты, фото и видеоматериалы;
- учебно-методические пособия для педагога и учащихся, включающие дидактический, информационный, справочный материалы на различных носителях, компьютерное и видео оборудование.

Применяемое на занятиях дидактическое и учебно-методическое обеспечение включает в себя электронные пособия, справочные материалы, программное обеспечение, используемое для обеспечения учебной и проектной деятельности, ресурсы сети Интернет.

Программа строится на следующих принципах общей педагогики:

- принцип доступности материала, что предполагает оптимальный для усвоения объем материала, переход от простого к сложному, от известного к неизвестному;
- принцип системности определяет постоянный, регулярный характер его осуществления;
- принцип последовательности предусматривает строгую поэтапность выполнения практических заданий в прохождения раздела, а также их логическую преемственность в процессе осуществления.

Педагогические технологии, которые применяются при работе с учащимися

Название	Цель
Технология личностно- ориентированного обучения	Развитие индивидуальных технических способностей на пути профессионального самоопределения учащихся
Технология развивающего обучения	Развитие личности и ее способностей через вовлечение в различные виды деятельности
Технология проблемного обучения	Развитие познавательной активности, самостоятельности

	учащихся
Технология дифференцированного обучения	Создание оптимальных условий для выявления задатков, развития интересов и способностей, используя методы индивидуального обучения
Здоровьесберегающие технологии	Создание оптимальных условий для сохранения здоровья учащихся

Диагностика результативности образовательного процесса

В течение всего периода реализации программы по определению уровня ее усвоения учащимися, осуществляются диагностические срезы:

- 1. *Входной контроль* посредством бесед, анкетирования, тестов, где выясняется начальный уровень знаний, умений и навыков учащихся, а также выявляются их творческие способности.
- 2. Промежуточный контроль позволяет выявить достигнутый на данном этапе уровень знаний учащихся, в соответствии с пройденным материалом программы. Проводятся контрольные тесты, опросы, беседы, выполнение практических заданий.
- 3. *Итоговый контроль* проводится по окончании программы и предполагает комплексную проверку образовательных результатов по всем ключевым направлениям. Данный контроль позволяет проанализировать степень усвоения программы учащимися. Результаты контроля фиксируются в диагностической карте.

Критерии оценки результативности обучения:

Общими *критериями оценки* результативности обучения являются:

- оценка уровня теоретических знаний: широта кругозора, свобода восприятия теоретической информации, развитость практических навыков работы со специальной литературой, осмысленность и свобода использования специальной терминологии;
- оценка уровня практической подготовки учащихся: соответствие развития уровня практических умений и навыков программным требованиям, свобода владения специальным оборудованием и оснащением, качество выполнения практического задания, технологичность практической деятельности;
- оценка уровня развития и воспитанности учащихся: культура организации самостоятельной деятельности, аккуратность и ответственность при работе, развитость специальных способностей, умение взаимодействовать с членами коллектива.

Возможные уровни теоретической подготовки учащихся:

Высокий уровень — учащийся освоил практически весь объем знаний (80-100%), предусмотренных программой за конкретный период;

специальные термины употребляет осознанно и в полном соответствии с их содержанием.

Средний уровень – у учащегося объем освоенных знаний составляет 50-79%; корректно использует специальную терминологию в речи.

Низкий уровень — учащийся овладел менее чем 50% объема знаний, предусмотренных программой; учащийся, как правило, избегает употреблять специальные термины.

Возможные уровни практической подготовки учащихся:

Высокий уровень — учащийся овладел 80-100% умениями и навыками, предусмотренными программой за конкретный период; работает с оборудованием самостоятельно, не испытывает особых трудностей; выполняет практические задания с элементами творчества.

Средний уровень — у учащегося объем усвоенных умений и навыков составляет 50-79%; работает с оборудованием с помощью педагога; в основном выполняет задания на основе образца.

Низкий уровень — учащийся овладел менее чем 50% умений и навыков, предусмотренных программой; испытывает затруднения при работе с оборудованием; учащийся в состоянии выполнять лишь простейшие практические задания педагога.

Достигнутые учащимся знания, умения и навыки заносятся в сводную таблицу результатов обучения.

Сводная таблица результатов обучения

№ п/п	ФИ учащегося	Теоретические знания	Практические умения и навыки	Творческие способности	Воспитательн ые результаты	Итого
1.						
2.						
3.						

Оценка уровней освоения программы

Уровни	Параметры	Показатели
Высокий	Теоретические	Учащийся освоил материал в полном
уровень	знания	объеме. Знает и понимает значение
(80-100%)		терминов, самостоятельно ориентируется
		в содержании материала по темам.
		учащийся заинтересован, проявляет
		устойчивое внимание к выполнению
		заданий.

		X7 V ~
	Практические умения и навыки	Учащийся способен применять практические умения и навыки во время выполнения самостоятельных заданий. Правильно и по назначению применяет инструменты. Работу аккуратно доводит до конца. Может оценить результаты выполнения своего задания и дать оценку работы своего товарища.
	Конструкторские способности	Учащийся способен узнать и выделить объект (конструкцию, устройство). Учащийся способен собрать объект из готовых частей или построить с помощью инструментов. Учащийся способен выделять составные части объекта. Учащийся способен видоизменить или преобразовать объект по заданным параметрам. Учащийся способен из преобразованного или видоизмененного объекта, или его отдельных частей собрать новый.
Средний уровень (50-79%)	Теоретические знания	Учащийся освоил базовые знания, ориентируется в содержании материала по темам, иногда обращается за помощью к педагогу. Учащийся заинтересован, но не всегда проявляет устойчивое внимание к выполнению задания.
	Практические умения и навыки	Учащийся владеет базовыми навыками и умениями, но не всегда может выполнить самостоятельное задание, затрудняется и просит помощи педагога. В работе допускает небрежность, делает ошибки, но может устранить их после наводящих вопросов или самостоятельно. Оценить результаты своей деятельности может с подсказкой педагога.
	Конструкторские способности	Учащийся может узнать и выделить объект (конструкцию, устройство). Учащийся не всегда способен самостоятельно разобрать, выделить составные части конструкции. Учащийся не способен видоизменить или преобразовать объект по заданным параметрам без подсказки педагога.

Низкий	Теоретические	Учащийся владеет минимальными
уровень	знания	знаниями, ориентируется в содержании
(меньше		материала по темам только с помощью
50%)		педагога.
	Практические	Учащийся владеет минимальными
	умения и навыки	начальными навыками и умениями.
		Учащийся способен выполнять каждую
		операцию только с подсказкой педагога
		или товарищей. Не всегда правильно
		применяет необходимый инструмент или
		на использует вовсе. В работе допускает
		грубые ошибки, не может их найти их
		даже после указания. Не способен
		самостоятельно оценить результаты своей
		работы.
	Конструкторские	Учащийся с подсказкой педагога может
	способности	узнать и выделить объект (конструкцию,
		устройство).
		Учащийся с подсказкой педагога
		способен выделять составные части
		объекта. Разобрать, выделить составные
		части конструкции, видоизменить или
		преобразовать объект по заданным
		параметрамможет только в совместной
		работе с педагогом.

Список использованной литературы для педагога:

- 1. Власова О.С. Образовательная робототехника в учебной деятельности учащихся начальной школы. Челябинск, 2014.
- 2. Мирошина Т.Ф. Образовательная робототехника на уроках информатики и физике в средней школе: учебно-методическое пособие. Челябинск: Взгляд, 2011.
- 3. Никулин С.К., Полтавец Г.А., Полтавец Т.Г. Содержание научнотехнического творчества учащихся и методы обучения. М.: Изд. МАИ, 2004.
- 4. Перфильева Л.П. Образовательная робототехника во внеурочной учебной деятельности: учебно-методическое. Челябинск: Взгляд, 2011.
- 5. Полтавец Г.А., Никулин С.К., Ловецкий Г.И., Полтавец Т.Г. Системный подход к научно-техническому творчеству учащихся (проблемы организации и управления). УМП. М.: Издательство МАИ. 2003.

Список Интернет-источников

1. Робототехника LEGO SPIKE Prime [Электронный ресурс]//Режим доступа: https://www.lektorium.tv/legorobot (Дата обращения: 24.01.2021)

Список литературы для учащихся

- 1. Белиовская Л.Г., Белиовский Н.А. Использование LEGO-роботов в инженерных проектах школьников. Отраслевой подход. М.: ДМК Пресс, 2016.
- 2. Белиовская Л.Г., Белиовский Н.А. Роботизированные лабораторные работы по физике. Пропедевтический курс физики (+ DVD- ROM). М.: ДМК Пресс, 2016.
- 3. Копосов Д.Г. Первый шаг в робототехнику: практикум для 5-6 классов. М.: БИНОМ. Лаборатория знаний, 2015. 288 с.
- 4. Филиппов С.А. Робототехника для детей и родителей. СПб.: Наука, 2013. 319 с.
- 5. Филиппов С.А. Уроки робототехники. Конструкция. Движение. Управление. М.: Лаборатория знаний, 2017.

Программу составила педагог дополнительного образования Центра внешкольной работы

С.В. Вершинина