МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ МОРДОВИЯ ГОСУДАРСТВЕННАЯ БЮДЖЕТНАЯ ОРГАНИЗАЦИЯ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ МОРДОВИЯ «РЕСПУБЛИКАНСКИЙ ЦЕНТР ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ДЕТЕЙ»

РЕКОМЕНДОВАНО Педагогическим советом ГБОДОРМ «РЦДОД» Протокол № 1 от «29» августа 2025 г.

УТВЕРЖДАЮ	
Директор ГБОДОР	М «РЦДОД»
	Уткина О.А.

ГБОДОРМ "РЕСПУБЛИКАНСКИЙ ЦЕНТР ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ДЕТЕЙ", Врио директора Ашаева Ольга Валерьевна 29.08.2025 13:58 (МSK), Простая подпись

Дополнительная общеобразовательная (общеразвивающая) программа «Программирование роботов — программирование роботов в среде VEXcode VR, RobotC, Arduino»

Направленность: техническая Уровень программы: углубленный Возраст обучающихся: 7-14 лет

Срок реализации программы: 2 года (288 часов)

Форма обучения: очная Язык обучения: русский

Авторы-составители: Коробанов Дмитрий Алексеевич, Агафонов Артём Андреевич, педагоги дополнительного образования

Структура программы

1. Пояснительная записка программы	3
2. Цели и задачи программы	9
3. Учебный план программы	10
4. Содержание учебного плана программы	10
5. Календарный учебный график программы	20
6. Календарный план воспитательной работы	24
7. Планируемые результаты освоения программы	25
8. Оценочные материалы программы	26
9. Формы, методы, приемы и педагогическая технология	27
10. Методическое обеспечение программы	28
11. Материальное техническое оснащение программы	29
12. Список используемой литературы	30

1. Пояснительная записка

Сегодня потребность в программировании роботов стала такой же повседневной задачей для продвинутого учащегося, как решение задач по математике или выполнение упражнений ПО русскому языку. Существующие среды программирования, как локальные, так И виртуальные, служат хорошим инструментарием для того, чтобы научиться программировать роботов. Хотя правильнее сказать не контроллеры, которые управляют роботами. Но «робот» – понятие более широкое, чем мы привыкли считать.

Робот – это любое электронное устройство, управляемое контроллером, который нужно соответствующим образом запрограммировать.

Для того чтобы запрограммировать робота, сначала необходимо сформировать у учащегося основы алгоритмического мышления. Для решения этой задачи лучше всего подходит популярная среда Scratch с графическим интерфейсом (http://scratch.mit.edu), которая наглядна и проста и, что немаловажно, бесплатна. В этой среде можно работать как в режиме онлайн (прямо на сайте), так и локально, установив редактор Scratch на свой ПК. Это позволит научить обучающихся программировать (создавать) игровые программы тем самым получить ключевые навыки программирования на этом языке, которые в дальнейшем понадобятся для программирования роботов.

На следующем этапе, в зависимости от учебных планов и оборудования, можно начинать программировать уже конкретные устройства, как виртуальные, так и реальные, в частности роботов или электронные устройства (например, «умный дом»).

Самый простой способ запрограммировать робота в Scratch описан на сайте https://vr.vex.com («Виртуальные роботы VEX»), который также бесплатен. Здесь пользователь познакомится с датчиками и расширенными опциями движения. Представленный на этом интернет-ресурсе набор

заданий (игровых полей или карт) для робота уже достаточно широк и может активно использоваться в учебном процессе.

Программная среда Scratch является универсальной для программирования многих образовательных робототехнических систем (конструкторов), и поэтому выбор бесплатной платформы VEXcode VR обусловлен именно этими факторами.

Многие производители робототехнических систем (VEX, «Роботрек» и пр.) используют в своих редакторах кода программирование контроллеров с помощью графических блоков по аналогии со Scratch. Это упрощает переход уже на «взрослое» программирование на других языках, чаще всего на языке Си. Во многих системах переход Scratch \rightarrow Си происходит автоматически, т. е. программа, написанная в Scratch, автоматически переводится в Си, и наоборот. После того как обучающиеся освоят программирование на Scratch, можно переходить к программированию на других языках, как было уже сказано выше, прежде всего, на язык Си, так как он является основным для программирования контроллеров, в первую очередь Arduino. В этом случае бесплатная среда онлайн-моделирования Tinkercad может помочь (http://tinkercad.com).

Программа содержит 2 блока «Введение в программирование роботов в среде VEXcode VR» и «Реализация проектов в среде VEXcode VR».

Нормативные основания для создания дополнительной общеобразовательной (общеразвивающей) программы:

- Федеральный закон «Об образовании Российской Федерации» от 29. 12. 2012 г. № 273-ФЗ (с изменениями и дополнениями);
- Концепция развития дополнительного образования, утверждена распоряжением Правительства Российской Федерации от 31 марта 2022 года № 678-р;
- Постановление Правительства Российской Федерации от 30 мая 2023 г. № 871 «О внесении изменений в некоторые акты Правительства Российской

Федерации» (внесены изменения в Концепцию развития дополнительного образования);

- Приказ Министерства просвещения Российской Федерации от 27. 07 2022 г. № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным образовательным программам»;
- Приказ Министерства просвещения Российской Федерации от 03. 09 2019 г. № 467 «Об утверждении Целевой модели развития системы дополнительного образования детей»;
- Приказ Министерства образования республики Мордовия от 26. 06 2023 г. № 795-ОД «Об утверждении Правил персонифицированного финансирования дополнительного образования детей в республике Мордовия» (с изменениями от 27.07.2023 г.);
- СанПин 2.4.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
 - Устав ГБОДОРМ «РЦДОД»;
- Локальный акт ГБОДОРМ «РЦДОД» «Положение о разработке, порядке утверждения, реализации и корректировки общеобразовательных программ».

Направленность программы – техническая.

Актуальность данной программы обусловлена социальным заказом. По данным Международной федерации робототехники, прогнозируется резкое увеличение оборота отрасли. Нас ежедневно знакомят с новыми роботизированными устройствами в домашнем секторе, в медицине, в общественном секторе и на производстве. Это – инвестиции в будущие рабочие места. Сейчас в России наблюдается острая нехватка инженерных кадров, а это серьезная проблема, тормозящая развитие экономики страны. Необходимо вернуть интерес детей и подростков к научно-техническому творчеству. Полученные на занятиях знания становятся для учащихся необходимой теоретической и практической основой их дальнейшего участия техническом творчестве, выборе будущей профессии, В В

определении жизненного пути. Овладев же навыками творчества сегодня, они в дальнейшем сумеют эффективно применить их в своей жизни. Данная программа помогает раскрыть творческий потенциал учащихся, определить их резервные возможности, осознать себя в окружающем мире, способствует формированию стремления стать конструктором, технологом, исследователем, изобретателем.

Новизна программы состоит в том, что учащиеся данной возрастной группы способны на хорошем уровне выполнять предлагаемые задания. В рамках индивидуальной и групповой проектной работы учащиеся знакомятся передовыми отечественными технологиями, создают технические и отрабатывают естественнонаучные публичных проекты; навыки выступлений презентаций. Освоение программы способствует И формированию профессионального самоопределения.

Педагогическая целесообразность объясняется программы ориентацией на результаты образования, которые рассматриваются на основе системно-деятельностного подхода. Главная цель системно-деятельностного подхода в обучении состоит в том, чтобы пробудить у учащегося интерес к предмету и процессу обучения, а также развить него навыки самообразования. Данная программа предлагает использование образовательных конструкторов и аппаратно-программного обеспечения как инструмента для обучения детей конструированию, моделированию Воплощение компьютерному управлению. авторского замысла В автоматизированные модели и проекты особенно важно для учащихся, у которых наиболее выражена исследовательская (творческая) деятельность.

Отличительные особенности программы. Программа ориентирована на формирование и развитие творческих способностей учащихся, интереса к научно-исследовательской деятельности, удовлетворения их индивидуальных потребностей в интеллектуальном совершенствовании. Знакомит учащихся с инновационными технологиями в области робототехники, помогает ребёнку адаптироваться в образовательной и

социальной среде. Для реализации программы используется метод дифференцированного обучения, основанный на принципах преемственности. Освоение программы происходит в основном в процессе практической творческой деятельности. К окончанию обучения учащийся должен иметь практические знания и умения создавать технические проекты, изучить развить предпринимательские, научные инженерные компетенции.

Возраст детей, участников программы и их психологические особенности Дополнительная общеобразовательная (общеразвивающая) программа «Программирование роботов — программирование роботов в среде VEXcode VR, RobotC» ориентирована на работу с детьми 7 - 14 лет. Программа предусматривает возможность обучения в одной группе детей разных возрастов с различным уровнем подготовленности к занятиям техническим творчеством.

Программа предполагает освоение видов деятельности в соответствии с психологическими особенностями возраста адресата программы.

Объём и сроки освоения программы

Срок реализации программы – 2 года.

Продолжительность реализации всей программы - 288 часов.

Отдельной части программы:

- модуль первого года обучения 144 часа в год,
- модуль второго года обучения 144 часа в год.

Занятия проводятся 2 раза в неделю по 2 часа. Данная программа «Программирование роботов – программирование роботов в среде VEXcode VR, RobotC, Arduino» разработана для учащихся 7 - 14 лет.

Количество обучающихся в группе 10 - 12 человек. Программа охватывает теоретический и практический блоки содержания.

Формы и режим занятий

В процессе реализации программы используются различные формы занятий: традиционные, комбинированные и практические занятия; лекции,

игры, праздники, конкурсы, соревнования и другие.

Методика предусматривает проведение занятий в различных формах: групповой, парной, индивидуальной.

Групповые занятия, с одной стороны, позволяют в игровой форме, при соблюдении различных игровых правил, подавать самый разнообразный материал, а с другой стороны, готовят ребенка к восприятию традиционных школьных форм подачи информации в системе «педагог- обучающийся». Игровые методики создают для детей младшего школьного возраста обстановку непринужденности, когда желание научиться чему бы то ни было возникает естественно, как бы само собой и постепенно перерастает в устойчивый познавательный интерес.

Парное взаимодействие способствует, с одной стороны, развитию коммуникативных навыков (умение договариваться, уступать, выслушивать другого; понятно и убедительно излагать свои пожелания и требования; совместно решать проблемы; радоваться достижениям другого ребенка и т.д.), а с другой стороны, закреплению знаний, умений и навыков, полученных при групповой форме обучения.

Индивидуальные занятия предусмотрены как для детей имеющих проблемы в обучении и развитии, так и для детей, опережающих своих сверстников. Оказание каждому ребенку эмоциональной поддержки обеспечивает ситуацию успеха, способствующую формированию устойчивой мотивации к обучению и общению в коллективе.

Используются различные методы, в основе которых лежит способ организации занятия:

- словесный (устное изложение, беседа, рассказ, лекция и т.д.)
- наглядный (показ видео и мультимедийных материалов, иллюстраций, наблюдение, показ (выполнение) педагогом, работа по образцу и др.) практический (выполнение работ по инструкционным картам, схемам и др.)

Методы, в основе которых лежит уровень деятельности детей:

- объяснительно-иллюстративный дети воспринимают и усваивают готовую информацию;
- репродуктивный обучающиеся воспроизводят полученные знания и освоенные способы деятельности;
- частично-поисковый участие детей в коллективном поиске, решение поставленной задачи совместно с педагогом;
 - исследовательский самостоятельная творческая работа учащихся.

Предложенные методы работы являются наиболее продуктивными при реализации поставленных целей и задач и основаны на проверенных методиках.

При определении режима занятий учтены санитарноэпидемиологические требования к организациям дополнительного образования детей. Структура каждого занятия зависит от конкретной темы и решаемых задач.

В случае возникновения форс мажорных обстоятельств программа может быть реализована с применением электронного обучения и дистанционных образовательных технологий.

2. Цель и задачи программы

Целью программы является развитие алгоритмического мышления обучающихся, их творческих способностей, аналитических и логических компетенций, а также пропедевтика будущего изучения программирования роботов на одном из современных языков.

Задачи учебной программы:

Познавательные:

- Начальное освоение компьютерной среды Scratch в качестве инструмента для программирования роботов;
- систематизация и обобщение знаний по теме «Алгоритмы» в ходе создания управляющих программ в среде Scratch;
- создание завершённых проектов с использованием освоенных навыков структурного программирования.

Регулятивные:

- формирование навыков планирования определения последовательности промежуточных целей с учётом конечного результата;
- освоение способов контроля в форме сопоставления способа действия и его результата с заданным образцом с целью обнаружения отличий от эталона.

Коммуникативные:

- формирование умения работать над проектом в команде;
- овладение умением эффективно распределять обязанности.

3. Учебный план

No	Название курса, модуля, раздела	Количество часов			
п/п		Теория	Практика	Всего	
1	Модуль первого года обучения	40	104	144	
2	Модуль второго года обучения	32	112	144	
ИТО	ΓΟ	72	216	288	

4. Содержание учебного плана

Модуль первого года обучения

Тема № 1. Вводное занятие. Робот. Базовые понятия.

Задача: Знакомство с планом работы. Знакомство с историей развития робототехники.

Введение понятия «робот». Поколения роботов. Классификация роботов. Кибернетическая система. Обратная и прямая связь. Датчики.

Расписание занятий, цели и задачи обучения, организация рабочегоместа. Инструктаж по технике безопасности.

Оборудование: Компьютер, интерактивная доска.

Тема № 2. Знакомство с платформой VEXcode VR.

Задача: Ознакомить обучающихся с платформой VEXcode VR. Основные

фрагменты интерфейса платформы. Панель управления, блоки программы, датчики, игровая площадка, экран датчиков и переменных, кнопки управления.

Оборудование: Компьютер, интерактивная доска.

Практическая работа: Выполнение самостоятельного задания по изученному материалу.

Тема № 3. Исполнительные механизмы конструкторов VEXcode VR.

Задача: научить обучающихся создавать простейшиепрограммы (скрипты) на платформе VEXcode VR.

Создание простейших программ (скриптов), сохранение и загрузка проекта.

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 1. Создание простейших программ (скриптов)».

Тема № 4. Программируемый контроллер.

Задача: Ознакомить обучающихся с блоками управления роботом (блоки вывода, блоки трансмиссии)

Математические и логические операторы, блоки вывода информации в окно вывода, блоки трансмиссии.

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение самостоятельного задания по изученному материалу.

Тема № 5. Основные блоки.

Задача: Ознакомить обучающихся с группой блоков управления роботом и возможностями программирования с их помощью.

Блоки управления, блоки переменных, блоки датчиков.

Оборудование: Компьютер, интерактивная доска, Виртуальная среда

VEXcode VR.

Практическая работа: Выполнение «Лабораторные работы 2-3.

Программирование блоков управления роботом».

Тема № 6. Датчик местоположения, направление движения.

Задача: Ознакомить обучающихся с датчиком местоположения. Местоположение VR-робота. Скрипт проекта с датчиком место-положения.

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 4. Скрипты с датчиком местоположения».

Тема № 7. Датчики цвета.

Задача: Ознакомить обучающихся с датчиками цвета (верхний и нижний), движением робота по дисковому лабиринту, рассмотреть отражения данных на панели управления и консоли экрана.

Датчики цвета и их направление. Игровое поле «Дисковый лабиринт». Оборудование: Компьютер, интерактивная доска, Виртуальная среда

VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 5. Игровое поле «Дисковый лабиринт».

Тема № 8. Датчик расстояния.

Задача: Ознакомить обучающихся с датчиком расстояния, рассмотрение различных типов лабиринта (простой и динамический).

Датчик расстояния. Простой лабиринт. Динамический лабиринт. Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторные работы 6-8. Простой лабиринт. Динамический лабиринт».

Тема № 9. Управление магнитом. Сбор фишек.

Задача: Ознакомить обучающихся с группой «Магнит».

Блоки группы «Магнит». Игровое поле «Перемещение фишек». Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 9. Игровое поле «Перемещение фишек».

Тема № 10. Блок команд «Управление».

Задача: Ознакомить обучающихся с блоками команд «Управление». Условный оператор if/else. Цикл while. Понятие шага цикла.

Применение на практике циклов и ветвлений. Использование циклов и ветвлений для решения математических задач. Использование циклов для объезда повторяющихся траекторий.

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 10. Ветвления на базе платформы VEXcode VR», «Лабораторная работа 11. Циклы на базе платформы VEXcode VR», Лабораторная работа 12. Блок «Всегда», блок «Прерывания» и блок «Ждать пока».

Тема № 11. Проект «Разрушение замка».

Задача: Ознакомить обучающихся с игровым полем «Разрушение замка». Игровое поле «Разрушение замка».

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 13. Проект по уборке территории».

Тема № 12. Проект «Динамическое разрушение замка».

Задача: Ознакомить обучающихся с игровым полем «Динамическое разрушение замка».

Игровое поле «Динамическое разрушение замка».

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторные работы 14-15. Проектпо уборке территории».

Тема № 13. Проект «Детектор линии».

Задача: Ознакомить обучающихся с игровым полем «Детектор линии». Игровое поле «Детектор линии».

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 16. Поиск и подсчёт линий».

Тема № 14. Проект «Объезд форм».

Задача: Ознакомить обучающихся с игровым полем «Объезд форм». Игровое поле «Объезд форм».

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 17. Объезд форм».

Тема № 15. Проект «Кодирование сообщения».

Задача: Ознакомить обучающихся с игровым полем «Кодирование сообщения». Игровое поле «Кодирование сообщения».

Оборудование: Компьютер, интерактивная доска, Виртуальная среда VEXcode VR.

Практическая работа: Выполнение «Лабораторная работа 18. Кодирование сообщения».

Тема № 16. Творческий проект.

Задача: На основе полученных знаний по работе с платформой каждый обучающийся создаёт свой проект.

Создание собственного проекта с использованием максимально возможного количества датчиков.

Оборудование: Компьютер, интерактивная доска, виртуальная среда VEXcode VR.

Практическая работа: Выполнение творческих проектных заданий.

Тема № 17. Тестирование проектов на физических робототехнических устройствах.

Задача: Используя полученные ранее проекты, обучающиеся проводятих тестирование на физических робототехнических устройствах.

Готовые проекты. Физические робототехнические устройства.

Тестирование проектов на физических робототехнических устройствах.

Оборудование: Компьютер, виртуальная среда VEXcode VR, физические робототехнические устройства.

Практическая работа: Выполнение тестирования проектов на физических робототехнических устройствах.

Тема № 18. Защита проектов.

Задача: Выступить с защитой проекта.

Оборудование: Компьютер, интерактивная доска, виртуальная среда VEXcode VR.

Модуль второго года обучения

Тема 1. Введение.

Задача: Научить учащихся работать с микросхемами и правила безопасности при работе с микросхемами

Оборудование: Компьютер, интерактивная доска.

Правила поведения при работе с микросхемами.

Тема 2. Основы радиоэлектроники

Задача: Изучить основные понятия в радиоэлектронике и научиться работать с электрическими приборами

Понятие электрический ток, напряжение, сила тока, закон Ома, знакомство с мультиметром. Оборудование: Компьютер, интерактивная доска, Виртуальная средаfalstad.com

Тема 3. Схема. Условно – графическое изображение

Задача: на примерах разобрать принцип составления схем и запомнить условные обозначения

Знакомство с радиоэлементами, изображениями на схеме.

Оборудование: Компьютер, интерактивная доска, Виртуальная средаfalstad.com **Тема 4. Принципиальная электрическая схема.**

Задача: Составление схемы на основе примеров и проектированиепроизвольных схем

Составление принципиальной электрической схемы, монтаж и отладка.

Оборудование: Компьютер, интерактивная доска, Виртуальная средаfalstad.com **Тема 5.** Электроприводы. Редукторы

Задача: Теоретическое представление о видах схем и наглядная демонстрация работы сервоприводов

Обзор робототехнических приводов. Знакомство с основными видами электродвигателей. Способы передачи движения. Понятие о редукторах.

Оборудование: Компьютер, интерактивная доска, Виртуальная среда falstad.com, видеоматериалы

Тема 6. Непрограммируемые роботы

Задача: Рассмотреть роботов на примерах и составить их схематическуюмодель Роботы на транзисторах. Знакомство с микросхемой L293D, L298N и ее возможностями.

Оборудование: Компьютер, интерактивная доска, примеры роботов,

видеоматериалы

Тема 7. Микроконтроллер.

Задача: ввод понятия микроконтроллера в Arduino

Знакомство с микроконтроллером Arduino

Оборудование: Компьютер, интерактивная доска, примеры роботов, видеоматериалы

Тема 8. Интерфейс работы с Arduino.

Задача: Познакомится с интерфейсом и выучить пункты меню Среда разработки Arduino

Оборудование: Компьютер, интерактивная доска, **Arduino** IDE, видеоматериалы

Тема 9. Свет и звук.

Задача: Узнать что такое светодиод, правила подключения светодиодови динамиков

Подключение светодиодов, семисегментного индикатора, ЖК дисплея и пьезоэлемента.

Оборудование: Компьютер, интерактивная доска, Виртуальная среда falstad.com, видеоматериалы

Тема 10. Управление.

Задача: Знакомство с джойстиком и его возможности в языке Arduino Подключение кнопок и джойстика.

Оборудование: Компьютер, интерактивная доска, **Arduino** IDE, видеоматериалы

Тема 11. Сервопривод.

Задача: Узнать правило подключения сервопривода и техникабезопасности при работе с движущимися деталями

Изучение сервопривода. Подключение и программирование. Оборудование: Компьютер, интерактивная доска, Arduino IDE, видеоматериалы

Тема 12. Датчики расстояния.

Задача: Использование датчика расстояния в повседневной жизни и правила его подключения. Знакомство с датчиками измерения расстояния. Соединение датчиков расстояния и сервоприводов, поворот в определенную сторону.

Оборудование: Компьютер, интерактивная доска, Arduino IDE, видеоматериалы.

Тема 13. Датчики и модули.

Задача: Теоретическое ознакомление с датчиками влажности и температуры

Знакомство с датчиками температуры, влажности. Подключение Wi-Fi и Bluetooth модулей.

Оборудование: Компьютер, интерактивная доска, видеоматериалы

Тема 14. Драйвер двигателя.

Задача: Ознакомить учащихся с драйверами робота.

Знакомство с драйвером двигателя.

Оборудование: Компьютер, интерактивная доска, Arduino IDE, видеоматериалы

Тема 15. Линейная программа.

Задача: Используя готового робота составить программу для движения. Сборка простой модели. Движение вперед-назад.

Оборудование: Компьютер, интерактивная доска, Arduino IDE, видеоматериалы

Тема 16. Разветвляющаяся программа.

Задача: Моделирование и программирование робота с заданными характеристиками

Сборка модели, движущейся по линии.

Оборудование: Компьютер, интерактивная доска, Arduino IDE, видеоматериалы

Тема 17. Умный робот.

Задача: Написание первой программы на основе полученных знаний Знакомство с TurtleBot и тестирование программы

Сборка модели с сервоприводом и ультразвуковым дальномером, объезжающим препятствия.

Оборудование: Компьютер, интерактивная доска, Arduino IDE, видеоматериалы, Turtle bot

Тема 18. Проект «Мой робот».

Задача: Создание индивидуального или группового проекта Сборка собственной модели.

Оборудование: Компьютер, интерактивная доска, Arduino IDE,

Тема 19. Демонстрация моделей

Итоговое занятие по дисциплине, демонстрация готовых проектов Оборудование: Компьютер, интерактивная доска, Arduino IDE,

5. Календарный учебный график программы

Модуль первого года обучения

<u>No</u>	Дата	Форма	Количе	Название темы	Форма
у. Занятия	, ,	-		TROSCHINO TOMBI	контроля
Summ	проведения	проведения	ство		- I - I - I - I - I - I - I - I - I - I
1	занятия	занятия	часов	D.	
1		Беседа	2	Вводное занятие.	Наблюдение,
					опрос детей,
2		Комбинир	2	Робот. Базовые понятия	Наблюдение,
		ованное			опрос детей,
					анализ работ
3-5		Комбинир	6	Знакомство с платформой VEXcode VR.	Наблюдение,
		ованное			опрос детей,
					анализ работ
6-9		Комбинир	8	Исполнительные механизмы конструкторов VEXcode VR.	Наблюдение,
		ованное			опрос детей,
					анализ работ
10-13		Комбинир	8	Программируемый контроллер.	Наблюдение,
		ованное			опрос детей,
					анализ работ
14-17		Комбинир	8	Основные блоки.	Наблюдение,
		ованное			опрос детей,
					анализ работ
18-21		Комбинир	8	Датчик местоположения, направление движения.	Наблюдение,
		ованное			опрос детей,
					анализ работ
22-25		Комбинир	8	Датчики цвета.	Наблюдение,
		ованное			опрос детей,
					анализ работ
26-29		Комбинир	8	Датчик расстояния.	Наблюдение,
20.27		Комонир	U	дат ит расстолиил.	таолюдение,

	ованное		опрос детей,
			анализ работ
30-33	Комбинир 8	Управление магнитом. Сбор фишек.	Наблюдение,
	ованное		опрос детей,
			анализ работ
34-39	Комбинир 12	Блок команд «Управление».	Наблюдение,
	ованное		опрос детелей,
			анализ работ
	Комбинир 6	Проект «Разрушение замка».	Наблюдение,
	ованное		опрос детей,
			анализ работ
43-45	Комбинир 6	Проект «Динамическое разрушение замка».	Наблюдение,
	ованное		опрос детей,
			анализ работ
46-50	Комбинир 10	Проект «Детектор линии».	Наблюдение,
	ованное		опрос детей,
			анализ работ
51-55	Комбинир 10	Проект «Объезд форм».	Наблюдение,
	ованное		опрос детей,
			анализ работ
56-60	Комбинир 10	Проект «Кодирование сообщения».	Наблюдение,
	ованное		опрос детей,
			анализ работ
61-65	Комбинир 10	Творческий проект.	Наблюдение,
	ованное		опрос детей,
			анализ работ

66-70	Комбинир ованное	10	Тестирование проектов на физических робото-технических устройствах.	Наблюдение, опрос детей,
				анализ работ

71-72		Комбинир	4	Защита проектов.	Наблюдение,
	0	ованное			опрос детей,
					анализ работ
Итого			144		

Модуль второго года обучения

$N_{\underline{0}}$	Дата	Форма	Количе	Название темы	Форма
занятия	проведени	проведени	ство		контроля
	я занятия	я занятия	часов		
1-2		Комбинир	4	Введение	Наблюдение,
		ованное			опрос детелей,
					анализ работ
3-5		Комбинир	6	Основы радиоэлектроники	Наблюдение,
		ованное			опрос детей,
					анализ работ
6-9		Комбинир	8	Схема. Условно – графическое изображение	Наблюдение,
		ованное			опрос детей,
					анализ работ
10-13		Комбинир	8	Принципиальная электрическая схема	Наблюдение,
		ованное			опрос детей,
					анализ работ
14-17		Комбинир	8	Электроприводы. Редукторы	Наблюдение,
		ованное			опрос детей,
					анализ работ
18-21		Комбинир	8	Непрограммируемые роботы	Наблюдение,
		ованное			опрос детей,
					анализ работ

22-25	Практ	гичес 8	Микроконтроллер	Наблюдение,
	кая			опрос детей,
				анализ работ

26-29	Комбинир	8	Интерфейс работы с Arduino	Наблюдение,
	ованное			опрос детей,
				анализ работ
30-33	Комбинир	8	Свет и звук	Наблюдение,
	ованное			опрос детей,
				анализ работ
34-37	Практичес	8	Управление	Наблюдение,
	кая			опрос детей,
				анализ работ
38-41	Практичес	8	Сервопривод	Наблюдение,
	кая			опрос детей,
				анализ работ
42-45	Практичес	8	Датчики расстояния	Наблюдение,
	кая			опрос детей,
				анализ работ
46-50	Практичес	10	Датчики и модули	Наблюдение,
	кая			опрос детей,
				анализ работ
51-54	Комбинир	8	Драйвер двигателя	Наблюдение,
	ованное			опрос детей,
				анализ работ
55-58	Комбинир	8	Линейная программа	Наблюдение,
	ованное			опрос детей,
				анализ работ
59-63	Комбинир	10	Разветвляющаяся программа	Наблюдение,
	ованное			опрос детей,
				анализ работ

64-67	Комбинир	8	Умный робот	Наблюдение,
	ованное			опрос детей,

				анализ работ
68-70	Исследова	6	Проект «Мой робот»	Наблюдение,
	тельская			опрос детей,
				анализ работ
71-72	Презентац	4	Демонстрация моделей	Наблюдение,
	РИ			опрос детей,
				анализ работ
Итого:		144		_

6. План воспитательной работы

Nº	Наименование мероприятия (форма)	Срок проведения	Практический результат и информационный продукт, иллюстрирующий успешное достижение цели события
1	День Знаний торжественная линейка	4 сентября	Фото с мероприятия. Пост в сообществе в VK.
2	Всероссийская неделя безопасности дорожного движения	19-23 сентября	Фото с мероприятия. Пост в сообществе в VK.
3	Всероссийский Урок астрономии	17 октября - 17 ноября	Фото с мероприятия. Пост в сообществе в VK.
4	Всероссийский Урок безопасности школьников в сети Интернет	28-31 октября	Фото с мероприятия. Пост в сообществе в VK.
5	Международный день толерантности	16 ноября	Фото с мероприятия. Пост в сообществе в VK.
6	Час истории «Блокада Ленинграда»	27 января	Фото с мероприятия. Пост в сообществе в VK.
7	Урок цифры	16 января - 5 февраля	Фото с мероприятия. Пост в сообществе в VK.
8	Всемирный День робототехники	7 февраля	Фото с мероприятия. Пост в сообществе в VK.
9	Всемирный День космонавтики	12 апреля	Фото с мероприятия. Пост в сообществе в VK.
10	Всероссийский Урок победы	5 мая - 22 июня	Фото с мероприятия. Пост в сообществе в VK.

7. Планируемые результаты освоения программы

знать:

- названия различных компонентов робота и платформы: контроллер (специализированный микрокомпьютер); исполнительные устройства мотор, колёса, перо, электромагнит; датчики цвета, расстояния, местоположения, касания; панель управления, ракурсы наблюдения робота; программные блоки по разделам; виды игровых полей (площадок); кнопки управления;
- математические и логические операторы; блоки вывода информации в окно вывода;
- принципы работы датчиков; блоки управления датчиками;
 возможности датчиков;

- условный оператор if/else; цикл while; понятие шага цикла.

уметь:

- программировать управление роботом; использовать датчики для организации обратной связи и управления роботом; сохранять и загружать проект;
- применять на практике логические и математические операции; использовать блоки для работы с окном вывода; составлять с помощью блоков математические выражения.
- использовать циклы и ветвления для реализации системы принятия решений; решать задачу «Лабиринт».
- применять на практике циклы и ветвления; использовать циклы и ветвления для решения математических задач; использовать циклы для объезда повторяющихся траекторий.

8. Оценочные материалы

Аттестация обучающихся проводится согласно локальному акту «Положение об аттестации обучающихся детских творческих объединений ГБОДОРМ «РЦДОД» и осуществляется в следующих формах: опрос, творческое задание, выставка.

Анализ полученных результатов позволяет педагогу подобрать необходимые способы оказания помощи отдельным детям и разработать адекватные задания и методики обучения и воспитания.

Виды контроля:

- > закрепления знаний, умений и навыков по пройденным темам;
- ▶ текущий, проводимый в ходе учебного занятия и закрепляющий знания по данной теме;
- итоговый, проводимый после завершения всей учебной программы.
 Формы проверки результатов:
 - наблюдение за детьми в процессе работы;
 - > соревнования; Формы подведения итогов:
 - > выполнение практических тестирований конструкций роботов;
 - > практические работы по сборке роботов;

Итоговая работа

Итоговый контроль обучающихся проводится по результатам выполнения практических заданий и защиты проектов.

Методы и формы отслеживания результативности обучения и воспитания: методы:

- > наглядные формы:
- > наблюдение за детьми в процессе работы;
- > рефлексия
- > соревнования;
- > индивидуальные и коллективные технические проекты.

Критерии оценки достижения планируемых результатов программы.

Результаты освоения программы определяются по трем уровням:

- высокий учащийся освоил практически весь объем знаний, предусмотренных программой за конкретный период, и научился применять полученные знания, умения и навыки на практике,
- средний усвоил почти все знания, но не всегда может применить их на практике,
- низкий овладел половиной знаний, но не умеет их правильно применять на практике

9. Формы обучения, методы, приемы, педагогические технологии

<u>Формы занятий</u>: наблюдение, контрольный опрос (устный), анализ контрольного задания, собеседование (групповое, индивидуальное).

Методы и приемы организации образовательного процесса:

Методы:

- научности;
- доступности (обучающимся);
- результативности;
- воспроизводимости (другими педагогами);
- -эффективности.

Приёмы:

- приёмы работы с текстовыми источниками информации;
- приёмы работы со схемами;
- приёмы работы с иллюстративными материалами;
- игровые приёмы;
- -вербальные приёмы обучения.

Педагогические технологии:

- здоровье сберегающие (направлены на максимальное укрепление здоровья обучающихся);
- личностно-ориентированные (в центре внимания которых неповторимая личность, стремящаяся к реализации своих возможностей и

способная на ответственный выбор в разнообразных жизненных ситуациях);

- игровые (обладают средствами, активизирующими и интенсифицирующими деятельность учащихся. В их основу положена педагогическая игра как основной вид деятельности, направленный на усвоение общественного опыта);
- технологии коллективной творческой деятельности (предполагают организацию совместных действий, коммуникацию, общение, взаимопонимание, взаимопомощь, взаимокоррекцию);
- коммуникативные (обучение на основе общения. Участники обучения педагог ребенок. Отношения между ними основаны на сотрудничестве и равноправии).

10. Методическое обеспечение программы

Учебные и методические пособия: научная, специальная, методическая литература (см. список литературы).

Дидактические материалы:

- образцы лучших работ детей.

Информационное обеспечение программы: аудио-, видео-, фото-,нтернет-источники.

Предложенные в настоящей программе темы заданий следует рассматривать как рекомендательные. Это дает возможность педагогу творчески подойти к преподаванию, применять разработанные им методики. Применение различных методов и форм (теоретических и практических занятий, самостоятельной работы по сбору материала и т.п.) должно четко укладываться в схему поэтапного ведения работы.

Программа предусматривает последовательное усложнение заданий.

Для успешного результата в освоении программы необходимы следующие учебно-методические пособия:

- наглядные методические пособия по темам,
- фонд лучших работ учащихся по разделам и темам,
- видеоматериал,

- интернет-ресурсы,
- презентационные материалы по тематике разделов.

Программа составлена в соответствии с возрастными возможностями и учетом уровня развития детей.

11. Материально-техническое обеспечение программы

Занятия проводятся в кабинете, соответствующем требованиям техники безопасности, пожарной безопасности, санитарным нормам. Учебное (обязательное) оборудование:

- основной и ресурсные наборы VEX IQ
- запчасти, составные части VEX IQ (моторы, двигатели, датчики)
- зарядка для аккумуляторов и дополнительные аккумуляторы.
- Компьютерное оборудование:
- Ноутбук, мышь, МФУ
- Сетевой удлинитель
- Интерактивный моноблочный дисплей
- Игровой стол
- Игровые поля
- Расходные материалы для учебного процесса.

В состав образовательного модуля входит: базовый робототехнический набор, сенсорный модуль на базе, сенсорный модуль светодиодного модуля и тактильного датчика, сенсорный модуль УЗ-дальномера, УЗ-дальномер и микроконтроллер MSP430, сенсорный модуль на базе датчика освещенности и цвета, сенсорный модуль тактильного датчика, микроконтроллер MSP430, позволяющий определять кратковременное нажатие.

Пульт дистанционного, USB-порт и порт для подключения радиомодуля. Аккумуляторная батарея, радиомодуль для беспроводной связи по радиоканалу частотой 2,4 ГГц.

Методические рекомендации, диск с программным обеспечением, игровое поле для соревнований, комплект соревновательных элементов.

12. Список используемой литературы

Список методической и учебной литературы

- 1. Босова Л. Л. Информатика. 8 класс: учебник. М.: БИНОМ. Лаборатория знаний, 2016. 176 с.
- 2. Бхаргава А. Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих. СПб.: Питер, 2017. 288 с.
- 3. Винницкий Ю. А. Scratch и Arduino для юных программистов и конструкторов. СПб: БХВ-Петербург, 2018. 176 с.
- 4. Голиков Д. В. Scratch для юных программистов. СПб.: БХВ-Петербург, 2017. 192 с.
- 5. Лаборатория юного линуксоида. Введение в Scratch. http://younglinux.info/ scratch
- 6. Луридас П. Алгоритмы для начинающих: теория и практика для разработчика. М. : Эксмо, 2018.-608 с.
- 7. Маржи М. Scratch для детей. Самоучитель по программированию пер. с англ. М. Гескиной и С. Таскаевой. М. : Манн, Иванов и Фербер, 2017. 288 с.
- 8. Пашковская Ю. В. Творческие задания в среде Scratch. Рабочая тетрадь для 5–6 классов. М., 2018. 195 с.
- 9. Первин Ю. А. Методика раннего обучения информатике. М.: «Бином», Лаборатория базовых знаний, 2008. 228 с.
- 10. Поляков К. Ю. Информатика. 7 класс (в 2 частях): учебник. Ч. 1 / К.Ю. Поляков, Е. А. Еремин. М.: БИНОМ. Лаборатория знаний, 2019.–160 с.
- 11. Рафгарден Т. Совершенный алгоритм. Жадные алгоритмы и динамическое программирование. СПб.: Питер, 2020. 256 с.
- 12. Рындак В. Г., Дженжер В. О., Денисова Л. В. Проектная деятельность школьника в среде программирования Scratch: учебно-метод. пособие. Оренбург: Оренб. гос. ин-т менеджмента, 2009. 116 с.
 - 13. Свейгарт Эл. Программирование для детей. Делай игры и учи язык

- Scratch!. М.: Эксмо, 2017. 304 с.
- 14. Семакин И. Г., Залогова, Л. А. и др. Информатика и ИКТ: учебник для 9 класса. М.: Бином, 2014. 171 с.
- 15. Торгашева Ю. Первая книга юного программиста. Учимся писать программы на Scratch. СПб.: Питер, 2016. 128 с.
- 16. Уфимцева П. Е., Рожина И. В. Обучение программированию младших школьников в системе дополнительного образования с использованием среды разработки Scratch // Наука и перспективы. 2018. № 1. с. 29—35.
- 17. Федоров Д. Ю. Программирование на языке высокого уровня Python: учеб. пособие для прикладного бакалавриата. М. : Издательство Юрайт, 2019. 161 с.
- 18. Адаменко А. Н., Кучуков А. М. Логическое программирование и Visual Prolog. СПб.: БХВ-Петербург, 2003. 992 с.
- 19. Братко И. Программирование на языке Visual Prolog для искусственного интеллекта. М.: Мир, 1990. 560 с. 31. Ин Ц., Соломон Д. Использование Турбо–Пролог. М.: Мир, 1993. 608 с.
- 20. Стерлинг Л., Шапиро Э. Искусство программирования на языке Visual Prolog. М.: Мир, 1990. 235 с.

Интернет-ресурсы:

- 1. https://scratch.mit.edu/ Сообщество Sctach.
- 2. https://vr.vex.com/ Программная среда VEXcode VR.
- 3. https://www.robotc.net/ Текстовый редактор RobotC.
- 4. <u>Робот</u> на транзисторах: http://myrobot.ru/forum/topic.php?forum=4&topic=269
 - 5. <u>Ha L293D: http://myrobot.ru/stepbystep/el_simple_robot.php</u>
 - 6. <u>5. Программа: http://arduino.ru/Arduino_environment</u>

- 7. http://robocraft.ru/blog/arduino/53.html
- 8. Светодиоды: http://student-proger.ru/2012/04/arduino-led-cvetomuzyka/
- 9. <u>Кнопка: http://edurobots.ru/2014/03/arduino-knopka/</u>
- 10. http://robocraft.ru/blog/arduino/57.html
- 11. Джойстик: http://zelectro.cc/joystick_Arduino
- 12. http://cxem.net/arduino/arduino68.php