муниципальное образовательное учреждение дополнительного образования «Городской центр технического творчества»

Принята	
на заседании пе	дагогического совета
Протокол №	14
«25» 06	2021 r.

Утверждаю: Директор МОУ ДО «ГЦТТ» (Березенкова Ю.Б.) «25» 06 2021 г.

Техническая направленность Дополнительная общеобразовательная общеразвивающая программа «Основы робототехники»

Возраст обучающихся: 10-18 лет Срок реализации: 1 год

Автор-составитель: Севрюк Алексей Олегович, Педагог дополнительного образования Консультант: Нечипорук Екатерина Петровна, зав. отделом образовательных программ

Содержание

Пояснительная записка	3
Учебно-тематический план	6
Календарный учебный график	6
Содержание программы	7
Обеспечение программы	9
Контрольно-измерительные материалы	10
Список информационных источников	11
Приложения	.12

Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Основы робототехники» разработана с учетом Федерального Закона Российской Федерации от 29.12.2012г. № 273 «Об образовании в Российской Федерации»; Приказа Министерства Просвещения Российской Федерации от 9 ноября 2018г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»: Постановления Главного государственного санитарного врача РФ от 4 июля 2014 г. № 41 «Об утверждении СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей», Постановления Главного государственного санитарного врача РФ от 30 июня 2020 г. № 16 «Об утверждении Санитарно-эпидемиологических правил СП 3.1/2.4.3598-20 "Санитарно-эпидемиологические требования к устройству, содержанию и организации работы образовательных организаций и других объектов социальной инфраструктуры для детей и молодежи в условиях распространения новой коронавирусной инфекции (COVID-19)"; Письма Министерства образования науки РФ от 18.11.2015 № 09-3242 «Методические рекомендации по проектированию дополнительных общеразвивающих программ», Устава МОУ ДО «ГЦТТ».

Среда обитания современного человека насыщена разнообразными электронными устройствами, которые будут и в дальнейшем развиваться и совершенствоваться. Другая сторона этого явления — упрощение самого процесса создания электронного устройства. Благодаря накопленным разработкам, он может быть настолько простым, что с ним справится и ребёнок.

Программа «Основы робототехники» включает определенный объем теоретических знаний и формы обучения детей на практических занятиях, она является первым шагом в процессе знакомства учащихся с основами электроники, радиотехники, электротехники и робототехники, а также ориентирует школьников на выбор профессии.

На практических занятиях учащиеся работают с комплектами электронных компонентов на платформе **Arduino**, оснащенной микропроцессором ATmega328p. На базе этой платформы ученики могут конструировать и программировать модели электронных управляемых систем, не вдаваясь в сложные вопросы схемотехники и программирования на низком уровне. Причём эта уникальная инженерно-конструкторская среда имеет низкий порог вхождения и не имеет «потолка». Конструировать и программировать простые устройства управления новогодней гирляндой или передачи акустических сигналов азбукой Морзе, несложные электронные игрушки ребёнок может уже на первых шагах знакомства с Arduino. В то же время Arduino используют профессиональные программисты и «продвинутые» любители в сложных конструкциях управления робототехническими устройствами.

С помощью Arduino учащийся может создать проект и запрограммировать его на выполнение определенных функций. Командная работа над практическими заданиями способствует глубокому изучению составляющих современных роботов, а визуальная программная среда позволит легко и эффективно изучить алгоритмизацию и программирование.

В процессе конструирования и программирования дети получат дополнительное образование в области физики, механики, электроники и информатики и программирования.

Дополнительным преимуществом изучения данной программы является создание команды единомышленников и ее участие в конкурсах и соревнованиях по робототехнике, что значительно усиливает мотивацию учеников к получению знаний.

Актуальность программы.

Основной акцент данной программы делается на детальное знакомство с электронными компонентами и изучение основ программирования. Эти знания позволят детям проявлять большую заинтересованность в освоении таких предметов как физика и информатика. А творческое, самостоятельное выполнение практических заданий, задания в форме описания поставленной задачи или проблемы, дают возможность учащемуся самостоятельно выбирать пути ее решения. Содержание дополнительного образования в области робототехники не стандартизируется, работа с учащимся происходит в соответствии с его интересами, его выбором, что позволяет безгранично расширять его образовательный потенциал.

При этом реализуются:

диалоговый характер обучения;

приспособление оборудования и инструмента к индивидуальным особенностям ребенка;

возможность коррекции педагогом процесса обучения в любой момент;

оптимальное сочетание индивидуальной и групповой работы.

Данная программа полностью соответствует личностно-ориентированной модели обучения и предоставляет широкие возможности для выявления, учёта и развития творческого потенциала каждого ребёнка, вкуса, проявления его индивидуальности, инициативы, формирования духовного мира, этики общения, навыка работы в творческом объединении.

Основными принципами работы педагога по данной программе являются:

принцип научности;

принцип доступности;

принцип сознательности;

принцип наглядности;

принцип вариативности;

принцип открытости.

Категория обучающихся:

Возраст обучающихся: 10-18 лет.

Категория детей – без особых образовательных потребностей, без ОВЗ.

Направленность:

Дополнительная общеобразовательная общеразвивающая программа «Основы робототехники»» имеет техническую направленность, она направлена на развитие познавательной активности, исследовательских, прикладных, конструкторских способностей обучающихся.

Вид программы – модифицированная. (разработана на основе программы Максимов А.В. «Робототехника. Arduino»)

Цель: обучение основам робототехники, программирования, развитие творческих способностей в процессе конструирования и проектирования.

Задачи:

- дать первоначальные знания о конструкции робототехнических устройств;
- научить программировать робототехнические устройства;
- сформировать общенаучные и технологические навыки конструирования и проектирования;
 - ознакомить с правилами безопасной работы с инструментами.
 - формировать творческое отношение к выполняемой работе;
 - воспитывать умение работать в коллективе, эффективно распределять обязанности.
 - развивать творческую инициативу и самостоятельность;
- развивать психофизиологические качества учеников: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном
- развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Ожидаемые (прогнозируемые) результаты:

Учащиеся 10-18 лет в результате усвоения программы должны знать:

- правила безопасной работы;
- основные компоненты конструкторов Arduino;
- конструктивные особенности различных моделей, сооружений и механизмов;
- компьютерную среду, включающую в себя графический язык программирования;
- виды подвижных и неподвижных соединений в «конструкторе»;
- приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.;
 - основные алгоритмические конструкции, этапы решения задач с использованием ЭВМ.
 уметь:

- использовать основные алгоритмические конструкции для решения базовых задач;
 конструировать различные модели;
 - использовать созданные программы;
 - применять полученные знания в практической деятельности.
 - владеть:
 - навыками работы с роботами;
 - навыками работы в среде Arduino.

Режим организации занятий:

Занятия проводятся 1 раз в неделю по 2 академических часа (45 минут) с организацией перерыва продолжительностью 10 минут. Нагрузка преподавателя составляет 2 академических часа в неделю.

Общий объем часов по реализации программы –72 часа.

Данная программа рассчитана на один год обучения.

Особенности комплектования групп:

Образовательной программой предусмотрены групповые занятия по 8-12 человек.

Занимаются обучающиеся в возрасте от 10 до 18 лет.

С обучающимися, показавшими высокий уровень достижений и результатов, возможна организация работы по индивидуальному плану в рамках данной программы.

Формы и способы проверки результатов:

Итоговый контроль учащихся проводится по окончанию обучения по дополнительной общеразвивающей программе, включает в себя проверку теоретических знаний и практических умений и навыков.

Итоговый контроль учащихся проводится следующих формах: практическое занятие, участие в соревнованиях, фестивалях и выставках.

Учебно-тематический план

№п/п	Название раздела, темы	количество часов		
		всего	теория	практика
1	Вводное занятие. Техника безопасности при работе с	2	2	
	техникой. Общий обзор курса.			
2	Знакомство с платой Arduino Uno.	2	2	
3	Теоретические основы электричества.	4	1	3
4	Схемотехника	16	2	14
5	Знакомство со средой программирования	2	2	
6	Логические переменные и конструкции	2	1	1
7	Аналоговые и цифровые входы и выходы.	2	1	1
	Принципы их использования.			
8	Сенсоры. Датчики Arduino.	2	1	1
9	Реализация проектов	10	2	8
10	Работа над собственными творческими проектами	30		30
	Итого	72	14	58

^{*}педагог имеет право менять очередность тематик, добавлять актуальные темы в рамках данного учебно-тематического плана

Календарный учебный график

Календарный учебный график программы реализуется на основе общего ежегодного календарного учебного графика МОУ ДО «ГЦТТ», утверждаемого в начале учебного года (Приложение 1).

Содержание программы

1. Вводное занятие. Техника безопасности при работе с техникой. Общий обзор курса.

Теория: Техника безопасности при работе с компьютерной техникой и электробезопасность. Современное состояние робототехники и микроэлектроники в мире и в нашей стране.

2. Знакомство с платой Arduino.

Теория: Структура и состав микроконтроллера. Пины.

3. Теоретические основы электричества.

Теория: Управление электричеством. Законы электричества. Как быстро строить схемы: макетная плата.

Практика: Чтение электрических схем. Управление светодиодом. Мультиметр основы. Электронные измерения

4. Схемотехника.

Теория: Принципы чтения схем.

Практика: Параллельное и последовательное подключение. Принцип работы переключателя. Принцип работы резистора. Эксперименты с резистором. Принцип работы переключателя. Принцип работы переключателя. Светодиоды. Принцип работы зуммера и переключателя. Принцип работы конденсатора. Эксперименты с конденсатором. Простая схема со светодиодами. Эксперименты с фотодиодом. Принцип работы сигнализации. Эксперименты с диодами. Эксперимент светодиод-фотодиод, «таймер 555». «Опыты с герконом». «Пульт для контроллера».

5. Знакомство со средой программирования.

Теория: Подпрограммы: назначение, описание и вызов. Параметры, локальные и глобальные переменные. Логические конструкции.

6. Логические переменные и конструкции.

Теория: Особенности подключения кнопки. Устранение шумов с помощью стягивающих и подтягивающих резисторов.

Практика: Программное устранение дребезга. Булевые переменные и константы, логические операции.

7. Аналоговые и цифровые входы и выходы. Принципы их использования.

Теория: Аналоговые и цифровые сигналы, понятие ШИМ.

Практика: Управление устройствами с помощью портов, поддерживающих ШИМ. Циклические конструкции, датчик случайных чисел.

8. Сенсоры. Датчики Arduino.

Теория: Роль сенсоров в управляемых системах.

Практика: Сенсоры и переменные резисторы. Делитель напряжения. Потенциометр. Аналоговые сигналы на входе Arduino. Использование монитора последовательного порта для наблюдений за параметрами системы.

9. Реализация проектов

Теория: Знакомство с резисторами, светодиодами. Сборка схем. Программирование: функция digitalWrite. Таблица маркировки резисторов. Мигание в противофазе. Подключение потенциометра. Аналоговый вход. Терменвокс. Подключение фоторезистора, пьезопищалки. Воспроизведение звука. Последовательное и параллельное подключение резисторов. Фоторезистор. Особенности подключения и программирования кнопки. Моделирование работы дорожного трехцветного светофора. Подключение программирование RGB-светодиода. Знакомство с устройством и функциями транзистора. Подключение и программирование устройств с транзисторами и светодиодной шкалой. Подключение и программирование устройств с транзисторами и светодиодной шкалой. Подключение трех кнопок и пьезопищалки. Понятие «дребезг» контактов. Триггер. Программирование музыки. Создание игрушки на реакцию: на быстроту нажатия кнопки по сигналу. Подключение семисегментного индикатора. Подключение инфракрасного датчика. Практика: Проекты: «Маячок», «Маячок с нарастающей яркостью», «Светильник с управляемой яркостью», «Терменвокс», «Пульсар», «Ночной светильник», «Кнопка + светодиод», «Светофор», «RGB светодиод», «Мерзкое пианино», «Бегущий огонек», «Кнопочный переключатель», «Кнопочные ковбои», «Охранная система», «Термометр», «Секундомер», «Мой робот», «Колесная база - Колесница», «Танец колесницы», «Колесница в плену», «Колесница на дороге».

10. Работа над собственными творческими проектами

Практика: Творческий проект сочетает в себе как электронную начинку и микроконтроллер, так и механику и корпус, изготовленные своими руками.

Обеспечение программы

Методическое обеспечение:

методические разработки, наглядные пособия, образцы моделей, схемы и чертежи, задания для закрепления пройденного материала. Регулярно проводятся внутригрупповые конкурсы, где обучающиеся представляют готовые творческие работы и происходит взаимное оценивание работ.

Материально-техническое обеспечение (оборудованный компьютерный класс):

$N_{\underline{0}}$	Наименование	Единица	Количество		
		измерения			
1.	Периферийные устройства (компьютерные мыши)	шт.	10		
2.	Устройства вывода (Колонки)	шт.	1		
3.	Цифровой проектор	ШТ	1		
4.	Программное обеспечение Arduino IDE	шт.	10		
5	Компьютер	шт.	1		
	Набор электронных компонентов на основе Arduino	ШТ	10		
6	Комплект 2 (робототехника, средний уровень, для детей 9-11 лет)				
6.1	Ноутбук	шт.	9		

МТО может быть изменено, обновлено, в зависимости от материально-технической базы центра.

Контрольно-измерительные материалы

Результаты обучения – умение применять электронные компоненты для решения простейших задач. Реализация этих решений при помощи Arduino.

Предполагаемые результаты реализации программы и критерии их оценки:

1 уровень	2 уровень	3 уровень
Первый уровень	Учащиеся самостоятельно, во	Учащиеся самостоятельно
предполагает формирование	взаимодействии с педагогом,	смогут применять
информационной культуры	высказывая мнения, смогут	полученные знания,
в рамках дополнительного	выполнять задания, обобщать,	аргументировать свою
образования. Учащиеся	классифицировать,	позицию, оценивать
приобретают знания о	обсуждать.	ситуацию и полученный
микроэлектронике,		результат.
робототехнике,		
программировании		
микроконтроллеров, о		
способах и средствах		
выполнения заданий.		
Формируется мотивация к		
учению через занятия.		

При организации процесса обучения в рамках данной программы предполагается применением следующих педагогических технологий обучения: организация самостоятельной работы, самоконтроля, рефлексивного обучения, организация работы в парах.

Форма оценки – демонстрация, защита работы, выступление перед зрителями, демонстрация полученного решения.

Система оценки результатов освоения программы состоит из текущего и итогового контроля успеваемости учащихся.

Текущий контроль учащихся проводится с целью установления фактического уровня теоретических знаний и практических умений и навыков по темам (разделам) дополнительной общеразвивающей программы.

Текущий контроль успеваемости учащихся осуществляется педагогом по каждой изученной теме и может проводиться в следующих формах: творческие работы, самостоятельные работы, практические работы, опросы; участие в фестивалях, соревнованиях.

Итоговый контроль учащихся проводится с целью выявления уровня развития способностей и личностных качеств ребенка и их соответствия прогнозируемым результатам освоения дополнительной общеразвивающей программы.

Итоговый контроль учащихся проводится по окончанию обучения по дополнительной общеразвивающей программе, включает в себя проверку теоретических знаний и практических умений и навыков.

Итоговый контроль учащихся проводится следующих формах: практическое занятие, участие в соревнованиях, фестивалях и выставках.

Список информационных источников.

Для обучающихся:

Основная (ЦОР):

- 1. http://wiki.amperka.ru/ теоретический и практический материал, описание практикума http://robocraft.ru/page/summary/#PracticalArduino Теоретический и практический материал http://avrstart.ru/?p=980 Электроника для начинающих. Уроки.
 - 2. Дополнительная
 - 3. http://bildr.org Инструкции и скетчи для подключения различных компонентов к плате Arduino.
 - 4. http://arduino4life.ru практические уроки по Arduino.
- 5. http://arduino-project.net/ Видео уроки, библиотеки, проекты, статьи, книги, приложения на Android.

Для педагога (ЦОР):

- 1. https://sites.google.com/site/arduinodoit/home Методические разработки, описание практических и лабораторных работ.
- 2. http://bildr.org Инструкции и скетчи для подключения различных компонентов к плате Arduino.
 - 3. http://arduino4life.ru практические уроки по Arduino.
- 4. http://avr-start.ru/?p=980 Электроника для начинающих. Уроки. http://edurobots.ru Занимательная робототехника. http://lesson.iarduino.ru Практические уроки Arduino.
- 5. http://zelectro.cc Сообщество радиолюбителей (Arduino). Уроки, проекты, статьи и др. http://cxem.net Сайт по радиоэлектроники и микроэлектронике.
- 6. http://arduino-project.net/ Видео уроки, библиотеки, проекты, статьи, книги, приложения на Android.
 - 7. http://maxkit.ru/ Видео уроки, скетчи, проекты Arduino.
- 8. http://arduino-diy.com Все для Arduino. Датчики, двигатели, проекты, экраны. http://www.robo-hunter.com Сайт о робототехнике и микроэлектронике. http://boteon.com/blogs/obuchayuschie-lekcii-po-arduino/uroki-po-arduino-oglavlenie.html? Уроки по Arduino.
- 9. http://arduinokit.blogspot.ru/ Arduino-проекты. Уроки, программирование, управление и подключение.
 - 10.http://kazus.ru/shemes/showpage/0/1192/1.html Электронный портал.
 - 11. Новости, схемы, литература, статьи, форумы по электронике.
- 12.http://www.radioman-portal.ru/36.php Портал для радиолюбителей. Уроки, проекты Arduino. http://www.ladyada.net/learn/arduino/ уроки, инструкция по Arduino. http://witharduino.blogspot.ru/ Уроки Arduino.
- 13.http://arduino.ru/Reference Проекты, среда программирования Arduino. http://abolshakov.ru/index/0-164 Видеоуроки, проекты, задачи. http://arduino-tv.ru/catalog/tag/arduino Проекты Arduino.
- 14.http://herozero.do.am/publ/electro/arduino/arduino_principialnye_skhemy_i_uroki/4-1-0-32 Принципиальные схемы и уроки Arduino.
- 15.http://interkot.ru/blog/robototechnika/okonnoe-upravlenie-sistemoy-arduino/студия инновационных робототехнических решений. Уроки, проекты.

Календарный учебный график на 20___- 20____ учебный год

№ недели	.№ vnoka	Количество	Тема	Форма
те педенн	J J poku	часов		контроля
1	1	1	Вводное занятие. Охрана труда. Общий обзор курса.	собеседование
	2	1	Знакомство с платой Arduino.	
	3	1	Законы электричества.	
2	4	1	Чтение схем. Построение схем. Макетная	схема
	4		плата.	
	5	1	Мультиметр основы. Электронные	
2	5		измерения.	
3	(1	Параллельное и последовательное	
	6		подключение	
1	7	1	«Пульт для контроллера»	
4	8	1	Принцип работы переключателя	
	0	1	Принцип работы резистора.	
5	9	1	Эксперименты с резистором.	
	10	1	Принцип работы переключателя	схема
	11	1	Принцип работы переключателя.	
6	11	1	Светодиоды	
6	12	1	Принцип работы зуммера и	
	12	1	переключателя	
7	13	1	Принцип работы конденсатора	
1	14	1	Эксперименты с конденсатором	
Q	15	1	Простая схема со светодиодами	схема
0	16	1	Эксперименты с фотодиодом	
0	17	1	Принцип работы сигнализации	
7	18	1	Эксперименты с диодами	
10	19	1	Эксперимент светодиод-фотодиод	
10	20	1	«таймер 555»	
11	21	1	«Опыты с герконом»	
11	22	1	Знакомство со средой программирования	
10	23	1	Переменные, логика, функции.	
12	24	1	Кнопки и логика	
12	25	1	Кнопки и логика	
13	26	1	Аналоговые и цифровые сигналы	
	27	1	ШИМ - управление яркостью	
14	28	1	Сенсоры, резисторы, делители	
			напряжения	
15	29	1	Монитор последовательного порта	
13	30	1	Проект «Маячок»	модель
	21		Проект «Маячок с нарастающей	модель
16	31		яркостью»	
16	32	1	Проект «Светильник с управляемой	модель
			яркостью»	

17	33	1	Проект «Терменвокс»	модель
1 /	34	1	Логические переменные и конструкции	модель
	25	1	Создание собственных творческих	модель
	35	1	проектов учащихся	
18			Аналоговые и цифровые входы и	
	36	1	выходы.	
			Принципы их использования.	
19	27	1	Создание собственных творческих	модель
	37	1	проектов учащихся	
	38	1	Проект «Ночной светильник»	модель
	39	1	Проект «Кнопка + светодиод»	модель
20	40	1	Создание собственных творческих	модель
	40	1	проектов учащихся	
21	41	1	Проект «Светофор»	модель
21	42	1	Проект «RGB светодиод»	модель
	43	1	Проект «Пульсар»	модель
22		1	Создание собственных творческих	модель
	44	1	проектов учащихся	
22	45	1	Проект «Бегущий огонек»	модель
23	46	1	Проект «Мерзкое пианино»	модель
	47	1	Проект «Кнопочный переключатель»	модель
24		1	Создание собственных творческих	модель
	48	1	проектов учащихся	
2.5	49	1	Проект «Кнопочные ковбои»	модель
25	50	1	Проект «Секундомер»	модель
•	51	1	Проект «Охранная система»	модель
26	52	1	Сенсоры. Датчики Arduino.	
			Создание собственных творческих	
	53	1	проектов учащихся	
27			Создание собственных творческих	модель
	54	1	проектов учащихся	
		1	Создание собственных творческих	модель
28	55	1	проектов учащихся	
	56	1	Проект «Термометр»	модель
	57	1	Проект «Дистанционный светильник»	модель
29			Подключение различных датчиков к	
	58	1	Arduino	
	59	1	«Колесная база - Колесница»	
30			Среда программирования Роботология	
	60	1	ARM-v8	
21	61	1	Калибровка датчиков, настройка.	
31	62	1	«Танец колесницы»	модель
22	63	1	«Колесница в плену»	модель
32	64	1	«Колесница на дороге»	модель
	65	1	Подключение сервопривода	
33		1	Создание собственных творческих	модель
	66	1	проектов учащихся	, ,
2.4	6 7	1	Создание собственных творческих	модель
34	67	1	проектов учащихся	, ,

	68	1	Создание собственных творческих	модель
	08	1	проектов учащихся	
35 69 70	60	I	Создание собственных творческих	модель
	09		проектов учащихся	
	70	1	Создание собственных творческих	модель
	70	1	проектов учащихся	
36	71	11	Создание собственных творческих	модель
			проектов учащихся	
	72	1	Итоговая конференция учащихся	проект